Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 190: 11-20, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28694154

RESUMO

Changes in photoperiod length are transduced into neuroendocrine signals by melatonin (MEL) secreted by the pineal gland triggering seasonally adaptive responses in many animal species. Siberian hamsters, transferred from a long-day 'summer-like' photoperiod (LD) to a short-day 'winter-like' photoperiod (SD), exhibit a naturally-occurring reversal in obesity. Photoperiod-induced changes in adiposity are mediated by the duration of MEL secretion and can be mimicked by exogenously administered MEL into animals housed in LD. Evidence suggests that MEL increases the sympathetic nervous system (SNS) drive to white adipose tissue (WAT). Here, we investigated whether MEL-driven seasonally adaptive losses in body fat are associated with WAT lipolysis and browning. Hamsters were subcutaneously administered vehicle (LD+VEH) or 0.4mg/kg MEL (LD+MEL) daily for 10weeks while animals housed in SD served as a positive control. MEL and SD exposure significantly decreased the retroperitoneal (RWAT), inguinal (IWAT), epididymal (EWAT) WAT, food intake and caused testicular regression compared with the LD+VEH group. MEL/SD induced lipolysis in the IWAT and EWAT, browning of the RWAT, IWAT, and EWAT, and increased UCP1 expression in the IBAT. Additionally, MEL/SD significantly increased the number of shared MEL receptor 1a and dopamine beta-hydroxylase-immunoreactive neurons in discrete brain sites, notably the paraventricular hypothalamic nucleus, dorsomedial hypothalamic nucleus, arcuate nucleus, locus coeruleus and dorsal motor nucleus of vagus. Collectively, these findings support our hypothesis that SD-exposed Siberian hamsters undergo adaptive decreases in body adiposity due to SNS-stimulated lipid mobilization and generalized WAT browning.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Lipólise/fisiologia , Phodopus , Fotoperíodo , Tecido Adiposo Marrom/metabolismo , Animais , Peso Corporal/fisiologia , Encéfalo/metabolismo , Colo/metabolismo , Cricetinae , Dopamina beta-Hidroxilase/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Melatonina/farmacologia , Melatonina/fisiologia , Neurônios/metabolismo , Receptor MT1 de Melatonina/metabolismo , Testículo/efeitos dos fármacos , Proteína Desacopladora 1/biossíntese
2.
Mol Metab ; 6(8): 854-862, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28752049

RESUMO

OBJECTIVE: We have previously shown that the consumption of a low-carbohydrate ketogenic diet (KD) by mice leads to a distinct physiologic state associated with weight loss, increased metabolic rate, and improved insulin sensitivity [1]. Furthermore, we identified fibroblast growth factor 21 (FGF21) as a necessary mediator of the changes, as mice lacking FGF21 fed KD gain rather than lose weight [2]. FGF21 activates the sympathetic nervous system (SNS) [3], which is a key regulator of metabolic rate. Thus, we considered that the SNS may play a role in mediating the metabolic adaption to ketosis. METHODS: To test this hypothesis, we measured the response of mice lacking all three ß-adrenergic receptors (ß-less mice) to KD feeding. RESULTS: In contrast to wild-type (WT) controls, ß-less mice gained weight, increased adipose tissue depots mass, and did not increase energy expenditure when consuming KD. Remarkably, despite weight-gain, ß-less mice were insulin sensitive. KD-induced changes in hepatic gene expression of ß-less mice were similar to those seen in WT controls eating KD. Expression of FGF21 mRNA rose over 60-fold in both WT and ß-less mice fed KD, and corresponding circulating FGF21 levels were 12.5 ng/ml in KD-fed wild type controls and 35.5 ng/ml in KD-fed ß-less mice. CONCLUSIONS: The response of ß-less mice distinguishes at least two distinct categories of physiologic effects in mice consuming KD. In the liver, KD regulates peroxisome proliferator-activated receptor alpha (PPARα)-dependent pathways through an action of FGF21 independent of the SNS and beta-adrenergic receptors. In sharp contrast, induction of interscapular brown adipose tissue (BAT) and increased energy expenditure absolutely require SNS signals involving action on one or more ß-adrenergic receptors. In this way, the key metabolic actions of FGF21 in response to KD have diverse effector mechanisms.


Assuntos
Adaptação Fisiológica , Dieta Cetogênica , Receptores Adrenérgicos/metabolismo , Redução de Peso , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiologia
3.
Physiol Rep ; 4(10)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27230905

RESUMO

Brown/beige adipocytes are therapeutic targets to combat obesity due to their abilities to dissipate energy through adaptive thermogenesis. Most studies investigating induction of brown/beige adipocytes were conducted in cold condition (e.g., 4°C); much is unknown about how the thermogenic program of brown/beige adipocytes is regulated in thermoneutral condition (e.g., 30°C), which is within the thermal comfort zone of human dwellings in daily life. Therefore, this study aims to characterize the thermogenic program of brown/beige adipocytes in mice housed under ambient (22°C) versus thermoneutral condition (30°C). Male mice raised at 22°C or 30°C were fed either chow diet or high-fat (HF) diet for 20 weeks. Despite less food intake, chow-fed mice housed at 30°C remained the same body weight compared to mice at 22°C. However, these thermoneutrally housed mice displayed a decrease in the expression of thermogenic program in both brown and white fat depots with larger adipocytes. When pair-fed with chow diet, thermoneutrally housed mice showed an increase in body weight. Moreover, thermoneutrality increased body weight of mice fed with HF diet. This was associated with decreased expression of the thermogenic program in both brown and white fat depots of the thermoneutrally housed mice. The downregulation of the thermogenic program might have resulted from decreased sympathetic drive in the thermoneutrally housed mice evident by decreased expression of tyrosine hydroxylase expression and norepinephrine turnover in both brown and white fat depots. Our data demonstrate that thermoneutrality may negatively regulate the thermogenic program and sympathetic drive, leading to increased adiposity in mice.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/fisiologia , Dieta Hiperlipídica/efeitos adversos , Termogênese/fisiologia , Animais , Temperatura Corporal/fisiologia , Feminino , Masculino , Camundongos
4.
Endocrinology ; 156(7): 2470-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25924103

RESUMO

Fibroblast growth factor 21 (FGF21) has multiple metabolic actions, including the induction of browning in white adipose tissue. Although FGF21 stimulated browning results from a direct interaction between FGF21 and the adipocyte, browning is typically associated with activation of the sympathetic nervous system through cold exposure. We tested the hypothesis that FGF21 can act via the brain, to increase sympathetic activity and induce browning, independent of cell-autonomous actions. We administered FGF21 into the central nervous system via lateral ventricle infusion into male mice and found that the central treatment increased norepinephrine turnover in target tissues that include the inguinal white adipose tissue and brown adipose tissue. Central FGF21 stimulated browning as assessed by histology, expression of uncoupling protein 1, and the induction of gene expression associated with browning. These effects were markedly attenuated when mice were treated with a ß-blocker. Additionally, neither centrally nor peripherally administered FGF21 initiated browning in mice lacking ß-adrenoceptors, demonstrating that an intact adrenergic system is necessary for FGF21 action. These data indicate that FGF21 can signal in the brain to activate the sympathetic nervous system and induce adipose tissue thermogenesis.


Assuntos
Adipócitos Brancos/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Canais Iônicos/efeitos dos fármacos , Proteínas Mitocondriais/efeitos dos fármacos , Receptores Adrenérgicos beta/genética , Sistema Nervoso Simpático/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Branco/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Infusões Intraventriculares , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 3/genética , Sistema Nervoso Simpático/metabolismo , Termogênese , Proteína Desacopladora 1
5.
Methods Enzymol ; 537: 199-225, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24480348

RESUMO

Here, we provide a detailed account of how to denervate white and brown adipose tissue (WAT and BAT) and how to measure sympathetic nervous system (SNS) activity to these and other tissues neurochemically. The brain controls many of the functions of WAT and BAT via the SNS innervation of the tissues, especially lipolysis and thermogenesis, respectively. There is no clearly demonstrated parasympathetic innervation of WAT or the major interscapular BAT (IBAT) depot. WAT and BAT communicate with the brain neurally via sensory nerves. We detail the surgical denervation (eliminating both innervations) of several WAT pads and IBAT. We also detail more selective chemical denervation of the SNS innervation via intra-WAT/IBAT 6-hydroxy-dopamine (a catecholaminergic neurotoxin) injections and selective chemical sensory denervation via intra-WAT/IBAT capsaicin (a sensory nerve neurotoxin) injections. Verifications of the denervations are provided (HPLC-EC detection for SNS, ELIA for calcitonin gene-related peptide (proven sensory nerve marker)). Finally, assessment of the SNS drive to WAT/BAT or other tissues is described using the alpha-methyl-para-tyrosine method combined with HPLC-EC, a direct neurochemical measure of SNS activity. These methods have proven useful for us and for other investigators interested in innervation of adipose tissues. The chemical denervation approach has been extended to nonadipose tissues as well.


Assuntos
Tecido Adiposo Marrom/inervação , Tecido Adiposo Branco/inervação , Sistema Nervoso Simpático , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/cirurgia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/cirurgia , Encéfalo/efeitos dos fármacos , Encéfalo/cirurgia , Capsaicina/administração & dosagem , Humanos , Norepinefrina/administração & dosagem , Oxidopamina/administração & dosagem , Termogênese/efeitos dos fármacos
6.
PLoS One ; 8(3): e60214, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555928

RESUMO

The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number) throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive) in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Hormônios Hipotalâmicos/deficiência , Melaninas/deficiência , Hormônios Hipofisários/deficiência , Células 3T3-L1 , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Hormônios Hipotalâmicos/genética , Melaninas/genética , Camundongos , Hormônios Hipofisários/genética , Ratos , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...